Cera-Kote® and Kaowool® B Cements

Datasheet Code US: 5-14-1005

Product Description
High temperature cements Cera-Kote, Cera-Kote 322-D, and Kaowool Cement B are air-setting cements for use with a variety of insulating products. They may be used for spray, dip, or brush application. These cements set with a strong hard film which will develop a ceramic bond above 1600°F (871°C).

Cera-Kote is an off white, medium viscosity regular grade cement.

Kaowool Cement B is a white, low viscosity premium grade cement.

Cera-Kote 322-D is a white, high viscosity, high strength premium grade cement.

Cera-Kote 624-A is a white, high viscosity, high strength premium grade non-RCF and non-crystalline silica containing cement.

Features
- Range of grades with different viscosities
- Develop strong bond on drying
- Long shelf life when properly stored
- Non-RCF and Non-Crystalline silica grade available

Applications
- Adhesive to apply foils (stainless or aluminum) to fiber blanket and board
- Adhesive to join vacuum formed ceramic fiber parts together
- Adhesive and insulation for heating elements
- Fiber surface encapsulation

Handling
High temperature cements must be protected from freezing. Adequate ventilation and precautions against inhalation of particles during spray application should be provided. Normal shelf life is six months in unopened containers that have been properly stored.

Installation Information
The surface to be coated should be clean and dry. For best adhesion, smooth surfaces should be roughened. With a coating of 0.047 in. (1.2 mm), approximately 34 square feet (3.2 square meters) will be covered per gallon.

Availability

<table>
<thead>
<tr>
<th>Products</th>
<th>1 gallon pail</th>
<th>5 gallon pail</th>
<th>16 oz squeeze bottle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaowool Cement B</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cera-Kote</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cera-Kote 322-D</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cera-Kote 624-A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The values given herein are typical average values obtained in accordance with accepted test methods and are subject to normal manufacturing variations. They are supplied as a technical service and are subject to change without notice. Therefore, the data contained herein should not be used for specification purposes. Check with your Morgan Advanced Materials office to obtain current information. This product may be covered by one or more patents or foreign equivalents: A list of patent numbers is available upon request to Morgan Advance Materials plc.

www.morganthermalceramics.com

Updated 10/2016
The values given herein are typical average values obtained in accordance with accepted test methods and are subject to normal manufacturing variations. They are supplied as a technical service and are subject to change without notice. Therefore, the data contained herein should not be used for specification purposes. Check with your Morgan Advanced Materials office to obtain current information. This product may be covered by one or more patents or foreign equivalents: A list of patent numbers is available upon request to Morgan Advanced Materials plc.

www.morganthermalceramics.com

Updated 10/2016

<table>
<thead>
<tr>
<th>Mastics Product Name</th>
<th>Kaowool Cement B</th>
<th>Cera-Kote 322-D</th>
<th>Cera-Kote 624-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Class</td>
<td>RCF</td>
<td>RCF</td>
<td>No fiber content</td>
</tr>
<tr>
<td>Material Grade</td>
<td>Cement</td>
<td>Cement</td>
<td>Cement</td>
</tr>
<tr>
<td>Physical Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>white</td>
<td>off-white</td>
<td>white</td>
</tr>
<tr>
<td>Continuous Use Temperature, °F</td>
<td>2200</td>
<td>2150</td>
<td>2200</td>
</tr>
<tr>
<td>Continuous Use Temperature, °C</td>
<td>1204</td>
<td>1177</td>
<td>1204</td>
</tr>
<tr>
<td>Classification Temperature, °F</td>
<td>2400</td>
<td>2300</td>
<td>2400</td>
</tr>
<tr>
<td>Classification Temperature, °C</td>
<td>1316</td>
<td>1260</td>
<td>1316</td>
</tr>
<tr>
<td>Melting Temperature, °F</td>
<td>3250</td>
<td>3200</td>
<td>3250</td>
</tr>
<tr>
<td>Melting Temperature, °C</td>
<td>1788</td>
<td>1760</td>
<td>1788</td>
</tr>
<tr>
<td>Drying temperature, maximum, °F</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Drying temperature, maximum, °C</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Shelf life, months</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Modulus of Rupture - Bond Strength, MOR, psi</td>
<td>205</td>
<td>180</td>
<td>255</td>
</tr>
<tr>
<td>Modulus of Rupture - Bond Strength, MOR, MPa</td>
<td>1.4</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Permanent Linear Shrinkage, %, 24 hours</td>
<td>2.5</td>
<td>3.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Chemical Analysis, % weight basis after firing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumina, Al₂O₃</td>
<td>44</td>
<td>39</td>
<td>44</td>
</tr>
<tr>
<td>Silica, SiO₂</td>
<td>55</td>
<td>59</td>
<td>55</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>